
SRNB Degree and PG College, Badvel 1
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

UNIT III

Syllabus :
Trees: Binary Tree, Definition, Properties, ADT, Array and Linked
representations, Implementations and Applications. Binary Search
Trees (BST) – Definition, ADT, Operations and Implementations, BST
Applications. Introduction to Threaded Binary Trees, Heap trees.

Tree: A Tree is a Non-linear data structure. It stores the data in

hierarchical manner. Suppose we want to show the employees of an
organization in the hierarchical form as shown below.

Characteristics of a Tree:

• A tree data structure is defined as a collection of objects or entities
known as nodes that are linked together to represent or simulate
hierarchy.

• A tree data structure is a non-linear data structure because it does
not store in a sequential manner. It is a hierarchical structure as
elements in a Tree are arranged in multiple levels.

• In the Tree data structure, the topmost node is known as a root node.
Each node contains some data, and data can be of any type. In the
above tree structure, the node contains the name of the employee,
so the type of data would be a string.

• Each node contains some data and the link or reference of other
nodes that can be called children.

SRNB Degree and PG College, Badvel 2
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

Basic Tree Terminology:
Root: The root node is the topmost node in the tree hierarchy. In other
words, the root node is the one that doesn't have any parent. If a node
is directly linked to some other node, it would be called a parent-child
relationship.
Parent: If the node contains any sub-node, other than the root node
then that node is called the parent of that sub-node.
Child node: If the node is a descendant of any node, then the node is a
child node.
Leaf Node: The node which doesn't have any child node is called a leaf
node. A leaf node is the bottom-most node of the tree. There can be any
number of leaf nodes present in a general tree.
Sibling: The nodes that have the same parent are known as siblings.
Subtree: Subtree represents the descendants of a node.
Traversing: Visiting every node in a specific order.
Levels: Level of a node represents the generation of a node. If the root
node is at level 0, then its next child nodes are at level 1 and grand child
nodes are at level 2 and so on.
Degree: Maximum number of children that is possible for a node is
called the degree of a node.
Height: The height of node x can be defined as the longest path from the
node x to the leaf node.
Link: Link is used to pointer to the other nodes in a tree. Example is Left
child and Right Child are the links to the root or parent.

SRNB Degree and PG College, Badvel 3
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

Q) Binary Tree
A Binary tree is a data structure that is defined as collection of elements.
In Binary tree every node contains maximum of two child nodes that
means it may contain either 0,1 or 2 nodes only. A node with zero
children’s is called leaf nodes.
Every node contains a data element, a left pointer which points to the
left child and a right pointer which points to the right child.
The root element is pointed by the root element. If root=NULL then the
tree is empty.
Example for the Binary tree
In below example P is root node and Q, R are the left and right child
nodes along with the sub trees.
The left sub-tree of the root node consists of the nodes: Q,A,B,D,E,F,I
and J. The right sub-tree of the root node consists of the nodes: R,C,G
and H.

In the above tree, root node P has two successors: Q and R. Node Q has
two successors: A and B. Node A has one successor: D. Node B has two
successors: E and F. Node D has two successors: I and J. Node R has one
successor: C. Node C has two successors: G and H.
Even the leaf nodes may contain the empty left sub trees and empty
right sub trees. The nodes I,J,E,F,G and H has no successors then these
are empty sub trees.

Q) Properties of Binary Tree
• At each level of i, the maximum number of nodes is 2i .

• The height of the tree is defined as the longest path from the root
node to the leaf node.

• The maximum number of nodes possible at height h is (20 + 21 +
22+….2h) = 2h+1 -1.

• The minimum number of nodes possible at height h is equal to h+1.

• If the number of nodes is minimum, then the height of the tree would
be maximum. Conversely, if the number of nodes is maximum, then
the height of the tree would be minimum.

SRNB Degree and PG College, Badvel 4
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

Types of Binary Trees: There are four types of Binary trees. They are,

1. Full Binary tree
2. Complete Binary tree
3. Perfect Binary tree
4. Degenerate Binary tree

1. Full Binary Tree: The full binary tree is also called as a strict binary
tree. The tree can only be considered as the full binary tree if each
node must contain either 0 or 2 children. The full binary tree can also
be defined as the tree in which each node must contain 2 children
except the leaf nodes.

In the above tree, we can observe that each node is either containing
zero or two children; therefore, it is a Full Binary tree.

2. Complete Binary Tree: The complete binary tree is a tree in which all
the nodes are completely filled except the last level. In the last level,
all the nodes must be as left as possible. In a complete binary tree,
the nodes should be added from the left.

The above tree is a complete binary tree because all the nodes are
completely filled, and all the nodes in the last level are added at the
left first.

SRNB Degree and PG College, Badvel 5
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

3. Perfect Binary Tree: A tree is a perfect binary tree if all the internal
nodes have 2 children, and all the leaf nodes are at the same level. All
the perfect binary trees are the complete binary trees as well as the
full binary tree, but vice versa is not true, i.e., all complete binary
trees and full binary trees are the perfect binary trees.

The above tree is a perfect binary tree because all nodes having 2
children except the leaf nodes.

4. Degenerate Binary Tree: The degenerate binary tree is a tree in which
all the internal nodes have only one children. There are two types of
degenerate binary trees. They are Left-degenerate binary tree and
Right-degenerate binary tree.

The above tree is a degenerate binary tree because all the nodes
have only one child. It is also known as a right-degenerate tree as all
the nodes have a right child only.

The above tree is also a degenerate binary tree because all the nodes
have only one child. It is also known as a left-skewed tree as all the
nodes have a left child only.

SRNB Degree and PG College, Badvel 6
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

Q) Representation of Binary Trees?
A binary tree can be represented in a hierarchical relationship between a
parent node and child node. A binary tree data structure is represented
using two methods. Those methods are as follows...

1. Array Representation
2. Linked List Representation

1. Array Representation: An array representation of a binary tree, we use
one-dimensional array (1-D Array) to represent a binary tree.
The array representation stores the tree data by scanning elements
using level order fashion. So, it stores nodes level by level. Starting from
the zero level where only one root node is present. The root node
stored in the first memory location. If some element is missing, it left
blank spaces for it.
For example, Consider the below tree:

Here the Array representation of the above Tree

The index 1 is holding the root, it has two children 5 and 16, they are
placed at location 2 and 3. Some children are missing, so their place is
left as blank.
In Array representation we can easily get the position of two children of
one node by using this formula −

child1=2∗parent
 child2=⟮2∗parent⟯+1
To get parent index from child we can use below formula

parent=child/2

SRNB Degree and PG College, Badvel 7
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

The height of a binary tree denotes the maximum number of nodes in the
longest path of the tree. A binary tree of height ‘h’ can have at most 2h -1
nodes.
This approach is good, and easily we can find the index of parent and child,
but it is not memory efficient. It will occupy many spaces that has no use.
This representation is good for complete binary tree or full binary tree.

2. Linked List Representation:
To avoid the memory usage in Array representation, we can represent
tree using Linked list. Here, we use a double linked list to represent a
binary tree. In a double linked list, every node consists of three fields.
First field for storing left child address, second for storing actual data
and third for storing right child address.
In this linked list representation, a node has the following structure...

In this representation, if one node knows the address of the any other
node then from there, we can access any node.

For example, Consider the below tree:

Here the Linked representation of the above Tree

SRNB Degree and PG College, Badvel 8
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

Q) Operations on Binary Tree
We can perform many operations on Binary tree. Here are the some of
them.

1. Insertion
2. Deletion
3. Merge
4. Traversals

1. Insertion: Insertion operation is used to insert an element in the tree.
2. Deletion: Deletion operation is used to delete an element from tree.
3. Merge: Merge operation is used to merge two trees into one tree.
4. Traversals: Traversal is nothing but going through each and every

node in tree.

Q) Traversals of a Binary Tree:
Traversal operation is frequently used operation in binary tree. This
operation is used to visit each node in the tree exactly once.
A full traversal on a binary tree gives a linear ordering of the data in
the tree. We have 3 types of Traversals in binary tree. They are

• Pre-Order Traversals

• In-Order Traversals

• Post-Order Traversals
Pre-Order Traversals: In Pre-Order traversal, the root node is visited
before the left child and right child nodes. Pre-order traversal is
applicable for every root node of all subtrees in the tree. It can be
defined as

- Visit root node first
- Visit the left sub-tree of the root
- Visit the right sub-tree of the root

Pre-Order Traversal for the example of the above given binary tree is
A - B - D - I - J - F - C - G - K – H
In-Order Traversal: In In-Order traversal, the root node is visited
between the left child and right child. In this traversal, the left child node
is visited first, then the root node is visited and later we go for visiting
the right child node. This in-order traversal is applicable for every root
node of all subtrees in the tree. This is performed recursively for all
nodes in the tree. Consider the below binary tree

SRNB Degree and PG College, Badvel 9
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

In-Order Traversal for the example of binary tree is

I - D - J - B - F - A - G - K - C – H
Post-Order Traversals: In Pre-Order traversal, the root node is visited
before the left child and right child nodes. In this traversal, the root
node is visited first, then its left child and later its right child. This pre-
order traversal is applicable for every root node of all subtrees in the
tree.

Pre-Order Traversal for the example of binary tree is

A - B - D - I - J - F - C - G - K - H

Q) Applications of Binary Trees:
Here is the list of Applications of Binary Trees
Binary Search Tree - Used in many search applications where data is
constantly entering/leaving
Binary Space Partition - Used in almost every 3D video game to
determine what objects need to be rendered.
Binary Tries - Used in almost every high-bandwidth router for storing
router-tables.
Hash Trees - used in p2p programs and specialized image-signatures in
which a hash needs to be verified, but the whole file is not available.
Heaps - Used in implementing efficient priority-queues, which in turn
are used for scheduling processes in many operating systems, Quality-
of-Service in routers, and A* (path-finding algorithm used in AI
applications, including robotics and video games). Also used in heapsort.
Huffman Coding Tree (Chip Uni) - used in compression algorithms, such
as those used by the .jpeg and .mp3 file-formats.
GGM Trees - Used in cryptographic applications to generate a tree of
pseudo-random numbers.

SRNB Degree and PG College, Badvel 10
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

Syntax Tree - Constructed by compilers and (implicitly) calculators to
parse expressions.
Treap - Randomized data structure used in wireless networking and
memory allocation.
T-tree - Though most databases use some form of B-tree to store data
on the drive, databases which keep all (most) their data in memory
often use T-trees to do so

Q) Binary Search Tree and ADT of Binary Search tree?
A Binary tree is also a binary search tree if it satisfies the following
properties:

• Binary Search tree can be defined as a class of binary trees, in
which the nodes are arranged in a specific order. This is also called
ordered binary tree.

• In a binary search tree, the value of all the nodes in the left sub-
tree is less than the value of the root node.

• Similarly, value of all the nodes in the right sub-tree is greater than
or equal to the value of the root.

• This rule will be recursively applied to all the left and right sub-
trees of the root.

A Binary search tree is shown in the above figure. As the constraint
applied on the BST, we can see that the root node 30 doesn't contain
any value greater than or equal to 30 in its left sub-tree and it also
doesn't contain any value less than 30 in its right sub-tree.
Advantages of using binary search tree
1. Searching become very efficient in a binary search tree since, we get

a hint at each step, about which sub-tree contains the desired
element.

2. The binary search tree is considered as efficient data structure in
compare to arrays and linked lists. In searching process, it removes
half sub-tree at every step.

3. It also speed up the insertion and deletion operations as compare to
that in array and linked list.

SRNB Degree and PG College, Badvel 11
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

ADT of Binary Search Tree: Abstract Data type of Binary search tree can
be represented below
 Abstract datatype
 {
 Instances: * T has a special node called root node

* Left sub tree nodes has smaller values then its
root
* right sub tree nodes has lager values then its
root

 Methods: put(x) – it is used to insert an element X
 Get(x) – it is used to get an element x
 Remove(x) – it is used to remove an element x
 }

Q) Operations on Binary Search Tree
There are many operations which can be performed on a binary search
tree. Below are the operations which are performed frequently

• Searching in BST

• Insertion in BST

• Deletion in BST
Searching in BST: Searching means finding or locating some specific
element or node within a tree data structure. However, searching for
some specific node in binary search tree is very easy because the
elements or nodes in BST are stored in a specific order.

1. Compare the element with the root node of the tree.
2. If the item is matched then return the location of the root node.
3. Otherwise check if item is less than the element present on root, if so
then move to the left sub-tree.
4. If not, then move to the right sub-tree.
5. Repeat 3 and 4 recursively until match found.
6. If element is not found then return NULL.

We will use the below algorithm to search an element
Step 1: IF ROOT = NULL then
 write “ my tree is empty”
 END IF
 Goto Step 3
Step 2: IF ITEM = ROOT DATA then
 print “ROOT DATA and address”
 ELSEIF
 ITEM < ROOT DATA then

https://www.javatpoint.com/searching-in-binary-search-tree
https://www.javatpoint.com/insertion-in-binary-search-tree
https://www.javatpoint.com/deletion-in-binary-search-tree

SRNB Degree and PG College, Badvel 12
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

 Search (LEFT Tree, ITEM)
 Repeat this until you find the ITEM
 ELSE
 Search(RIGHT Tree, ITEM)
 Repeat this until you find the ITEM
 END IF
 ENDIF
Step 3: Exit

Example: Search element/item 60 from the given tree

Insertion in BST: Insert is used to add a new element in a binary search
tree at appropriate location. Insert is designed in such a way that; it
must not violate the property of binary search tree at each value.

Here are steps to insert an element in Binary search tree
1. Allocate the memory for tree.
2. Set the data part to the value and set the left and right pointer of tree,
point to NULL.
3. If the item to be inserted, will be the first element of the tree, then
the left and right of this node will point to NULL.
4. Else, check if the item is less than the root element of the tree, if this
is true, then recursively perform this operation with the left of the root.
5. If this is false, then perform this operation recursively with the right
sub-tree of the root.

SRNB Degree and PG College, Badvel 13
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

We will use the below algorithm to insert an element
Step 1: IF ROOT = NULL then
 ROOT→DATA = ITEM
 END IF
 Goto Step 3
Step 2: IF ITEM < ROOT →DATA then
 Insert (LEFT Tree, ITEM)
 Repeat Step 2 until you insert the ITEM
 ELSE
 Search(RIGHT Tree, ITEM)
 Repeat Step 2 until you Insert the ITEM
 END IF
Step 3: Exit
Example: Insert an element 95 to the tree

Deletion in BST: Delete operation is used to delete the specified node
from a binary search tree. However, we must delete a node from a
binary search tree in such a way, that the property of binary search tree
doesn't violate. There are three situations of deleting a node from binary
search tree.
The node to be deleted is a leaf node: This is very simple, in this just
replace the leaf node with the NULL and simple free the allocated space.
In the following image, we are deleting the node 85, since the node is a
leaf node, therefore the node will be replaced with NULL and allocated
space will be freed.

SRNB Degree and PG College, Badvel 14
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

The node to be deleted has only one child: In this , replace the node
with its child and delete the child node, which now contains the value
which is to be deleted. Simply replace it with the NULL and free the
allocated space.
In the following image, the node 12 is to be deleted. It has only one
child. The node will be replaced with its child node and the replaced
node 12 (which is now leaf node) will simply be deleted.

The node to be deleted has two children: It is a bit complexed case
compare to other two cases. However, the node, which is to be deleted,
is replaced with its in-order successor or predecessor recursively until
the node value (to be deleted) is placed on the leaf of the tree. After the
procedure, replace the node with NULL and free the allocated space.

In the following image, the node 50 is to be deleted which is the root
node of the tree. The in-order traversal of the tree given below.

SRNB Degree and PG College, Badvel 15
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

We will use the below algorithm to delete an element
Step 1: IF ROOT = NULL then
 Write “ UNDERFLOW”
 END IF
 Goto Step 3
Step 2: IF ITEM = ROOT DATA then
 Delete ROOT DATA
 ELSEIF ITEM < ROOT DATA then
 Delete (LEFT Tree, ITEM)
 Repeat Step 2 until you delete the ITEM
 ELSE
 Delete(RIGHT Tree, ITEM)
 Repeat Step 2 until you delete the ITEM
 END IF
Step 3: Exit

Q) Applications of Binary Search Tree:
Binary Search Trees are used for a lot of applications due to its ordered
structure.
1. Binary search trees can be used to Represent Arithmetic expressions.
2. Binary search trees can be used to Manipulate hierarchical data.
3. Binary search trees can be used to store data efficiently.
4. It stores data efficiently because of this the access is faster and simple
5. Searching is very faster in Binary search trees compared to basic trees
6. Binary Search Trees are used to implement various searching

algorithms.
7. TreeMap and TreeSet data structures are internally implemented

using self-balancing BSTs.
8. A Binary Search Tree is used to implement doubly ended priority

queue.

Q) Threaded Binary Tree:
We know that the binary tree nodes may have at most two children. But
if they have only one children, or no children, the link part in the linked
list representation remains null. Using threaded binary tree
representation, we can reuse that empty links by making some threads.
If one node has some vacant left or right child area, that will be used as
thread. There are two types of threaded binary tree. They are

1. Single threaded Binary tree
2. Fully threaded binary tree.

The Single threaded Binary Tree, there are another two variations. Left
threaded Binary Tree and Right threaded Binary Tree.

SRNB Degree and PG College, Badvel 16
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

In the left threaded Binary Tree if some node has no left child, then the
left pointer will point to its inorder predecessor.
In the right threaded Binary Tree if some node has no right child, then the
right pointer will point to its inorder successor. In both cases, if no
successor or predecessor is present, then it will point to header node.
Below are the examples for Left and right threaded binary tree:

Left Threaded Binary Tree

Right Threaded Binary Tree:

For fully threaded binary tree, each node has five fields. Three fields like
normal binary tree node, another two fields to store Boolean value to
denote whether link of that side is actual link or thread.

SRNB Degree and PG College, Badvel 17
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

Q) Heap Trees:
A heap is a specialized binary tree, and the binary tree is a tree in which
the node can have utmost two children. The heap tree is a special
balanced binary tree data structure where the root node is compared
with its children and arrange accordingly.
We can represent the Heap trees in two ways

1. Max-Heap tree
2. Min-Heap Tree

1. Min-Heap Trees:
The value of the parent node should be less than or equal to either of
its children. In other words, the min-heap can be defined as, for every
node i, the value of node i is greater than or equal to its parent value
except the root node. Mathematically, it can be defined as:
 A[Parent(i)] <= A[i]

In the above figure, 11 is the root node, and the value of the root node
is less than the value of all the other nodes (left child or a right child).

2. Max-Heap Trees:
The value of the parent node is greater than or equal to its children. In
other words, the max heap can be defined as for every node i; the value
of node i is less than or equal to its parent value except the root node.
Mathematically, it can be defined as:
 A[Parent(i)] >= A[i]

In the above figure, 44 is the root node, and the value of the root node
is greater than the value of all the other nodes (left child or a right child).

SRNB Degree and PG College, Badvel 18
SEMESTER-IV

BSc Second YEAR, 2021

Prepared by Subba Reddy

Q) Draw the max-Heap and Min-Heap Trees using below values
44, 33, 77, 11, 55, 88, 66
Suppose we want to create the max heap tree. To create the max heap
tree, we need to consider the following two properties:
1. we have to insert the element in such a way that the property of the
complete binary tree must be maintained.
2. The value of the parent node should be greater than the either of its
child.
Here are the steps to create max heap tree
Step 1: First we add the 44 element in the tree
Step 2: The next element is 33. As we know that insertion in the binary
tree always starts from the left side so 44 will be added at the left of 33
Step 3: The next element is 77 and it will be added to the right of the 44
As we can observe in the above tree that it does not satisfy the max
heap property, i.e., parent node 44 is less than the child 77. So, we will
swap these two value
Step 4: The next element is 11. The node 11 is added to the left of 33
Step 5: The next element is 55. To make it a complete binary tree, we
will add the node 55 to the right of 33
As we can observe in the above figure that it does not satisfy the
property of the max heap because 33<55, so we will swap these two
values
Step 6: The next element is 88. The left subtree is completed so we will
add 88 to the left of 44
As we can observe in the above figure that it does not satisfy the
property of the max heap because 44<88, so we will swap these two
values
Again, it is violating the max heap property because 88>77 so we will
swap these two values
Step 7: The next element is 66. To make a complete binary tree, we will
add the 66 element to the right side of 77 as shown below:
In the above figure, we can observe that the tree satisfies the property
of max heap; therefore, it is a heap tree

 ***********END******************

