
12 
 

Unit – II 

Decision Control & Looping Statements 

Goto Statement: A goto statement in “C” programming provides an unconditional jump form goto to a 

labled statement in the same function. 

Syntax: The syntax for a goto statement in C is as follows. 

1. Forward Direction   2. Backward Direction 

Goto label;     label:statement; 

--------------     --------------------- 

---------------     --------------------- 

Label:statement;    goto label; 

In the above syntax label is a plain text. The diagramatic representation is as follows. 

 

   Label 1 

   Label 2 

   Label 3 

 Lets us consider an example “C” program using goto statement. 

  #include<stdio.h> 
  void main() 
  { 
   int a = 1; 
  loop: while ( a<=5) 
   { 
   if(a==4) 
   { 
    a=a+1;  
    goto loop; 
   } 
   printf(“ a value is %d”,a); 
   a++; 
   } 
  } 
The above program will produce the following output 
  a value: 1 
  a value: 2 
  a value: 3 
  a value: 5 

Nesterd loops: 
 C Programming allows to use one loop inside another loop is know as nested loops. 
 The following are some of the examples of nested loops. 
Syntax: 

1. The syntax for a nested for loop statement in C as follows. 
For(initialization;condition;incr/decr); 
{ 
 -------- 
 For(in initialization;condition;incr/decr); 
 { 
  ------- 
  ------- 
 } 
} 

2. The syntax for a nested while loop statement in C as follows 
while (condition) 
{ 
 ----------- 
 ------------ 
 while(condition); 
 { 

 ---------- 
 ---------- 
 } 
 ------------- 
 ------------- 
} 

   Statement 1 

   Statement 2 

   Statement 3 

Goto  



13 
 

 
3. The syntax for a nested “do.. while loop” statement in C as follows. 

do 
{ 

----------- 
----------- 
do 
{ 
 ----------- 
 ----------- 
}while(condition); 

 Let us consider a simple nested loop program as follows. 
    #include<stdio.h> 
    void main() 
    { 
     int i,j; 
     for(i=1;i<=5,i++); 
     { 
      for(j=1;j<=5;j++); 
      { 
       printf(“%d%d”,i,j); 
      } 
     } 
    } 

Decision Making and Branching Statements: 
 Java programs contains sequence of instructions. If we want to change the orders of execution i.e., 
when a program break the sequential flow and jump to another part of code is called Branching. When the 
branching is made based on a condition then it is known as conditional branching. 
 The conditional branching statements are 

1. If statement 
2. Switch statement 

1. If statement: The if statement is implemented in different forms based on the complexity of a 
program. 

a. Simple if 
b. If else 
c. If else if 
d. Nested if 

a. Simple if: the general form of if statement is as follows. 
Syntax:  if(condition) 
  { 
   true block 
  } 
   statement x 

 

In simple if, if the test condition is true then true block will be executed and statement –x will be executed otherwise 

true block will be stopped and the execution will be jumped in to statement – x. 

b. If else:       if else statement is an extension of simple if statement. The general syntax of if else statement is as 

follows. 

Syntax: if (condition) 
  { 
  true block 
 }else 
 { 
  false block 
 } 
  statement - x 

 

 

cond 

True block 

    Statement-x 

cond 

True block 

    False block 

            Statement - x 



14 
 
 In if else statement, if the test condition is true, then true block will be executed and the statement – 

x will be executed. Note two blocks will not executed only one block will executed.  

c. If else if: There is another way of putting if else statements to gether when multiple decisions are involved. If 

else if statement is a chain of if else statements. The general form of if else if statement as follows. 

Syntax: if (condition- 1)  
     statement 1 f 
     else if(condition – 2) 
   statement 2 
 else if(condition – 3) f 
  statement – 3 
 else if(condition – n) 
  statement – n f 
 statement – x   

 

 

 

 In if else if statement, it the test condition is true statement 1 will be executed and statement – x 

will be executed. If it is false, condition – 2 will be checked. If condition – 2 is false, true statement – 2 and 

statement – x will be executed. If condition 2 false, condition 3 will be executed. If it is false statement 4 and 

statement x will be execute. 

d. Nested if: when a series of decisions are involved we may have to use more than one if else 

statements in nested form as follows. 

Syntax:  

if(condition – 1) F T 

if(condition – 2) 

 statement – 1 

 else 

 statement – 2 

 else F T 

 statement – 3 

statement – x   

 

 

  

 In nested if statement, if the left condition 1 is true, condition 2 will be checked, if condition 2 is 

true statement 3 and then statement x will be executed. If condition 1 is false, statement 1 will be executed 

and then statement x will be executed. If condition 2 is false statement 2 will be executed and statement x will 

be executed. 

2. Switch Statement: In java language there is another way to make multipath decisions are involved 

or character value and test against a list of case values, when a match is found a block of statements 

will be executed. Otherwise, default block will be executed. The general syntax of switch statement is 

as follow. 

switch(expression) 

{ 

 case1:  block; 

   break; 

 case2: block; 

   break; 

 .  . . . 
 .  .  . . 
 case n: block; 

   break; 

Cond 1 

Cond3 

 

Cond2 

 

Statement – 1  

Statement – x  

Statement 2

  

Statement 4 Statement 3 

Cond1 

Cond2 Statement – 1  

Statement – 2  Statement - 3 

Statement - x 

switch 

Case 1  Block 1 

Case 2 Block 2 

Default  Statement z 

Case n  Block n 



15 
 

default: statement z; 

} 

statement – x  

4. Looping statements or iterative statements:  

 In looping a block of statements are repeated again and again until the test condition becomes 

false. A loop consist of two segments. The first is a condition and second is body of loop. 

 In C language loop construct as follows 

 Entry control loop – while , for 

 Exit control loop  -- do while 

While loop: 

 The simplest of all the looping structures in the is while loop statement. The while loop is entry 

controlled loop. The general syntax is as follows. 

Syntax: 

while(condition) T 
{ 
 ………. 
 ………. 
 Body of the loop 
 ………..  F 
 ………..  
} 
 If the test condition is true then body of the loop is executed. After execution of body, the test 
condition is checked again and if it is true the body of the loop is executed again. This process continuous until 
the test condition becomes false. 
Ex: i=1; 
 while(i<=5) 
 { 
  printf(“%d”,i); 
  i++; 
 } 
Do while loop statement: the while loop checks the condition first, if it is true body of the loop is executed. 
Therefore the body of the loop may not executed if the condition is false. 
 In same situations, it is necessary to execute boy of the loop atlease once. This type of situations is 
handle by do while loop statement. The general syntax is as follows. 
Syntax: 
do 
{ 
 ……….. 
 ……….. 
 body of loop T 
 ……… 
 ……… 
}while(condition);  F 
 In do while loop first body of the loop will be executed and then the test condition is checked if it is 
true, boy of the loop is executed once again. This process continuous until the test condition becomes false. 
Ex: i=1; 
 do 
 { 
  printf(“%d”,i); 
  i++; 
 }while(i<=5); 
For loop statement: The for loop is another entry controlled loop. It provides a more concise looping 
structure. The general syntax is as follows. 
Syntax: for(initialization; condition; increment/decrement) 
 { 
   …………. 
   ………. 
   body of the loop 
   …………. 
 } 

Condition 

Body of the loop 

Body of the loop 

Condition 



16 
 

ex: for(i=1;i<=5;i++) 
 { 
  count<<i 
 } 
 In for loop initialization of the variable is done first, then the variable is tested using a condition. If 
it is true, body of the loop is executed, otherwise loop is terminated. If the body of the loop is executed the 
variables value is incremented or decremented. 
Nested looping structure: 
 Nesting of loops i.e., one loop statement defined inside another loop statement. 
Ex: while(condition) 
 { 
  while(condition) 
  { 
   …….. 
   ……….. 
   body of the loop 
   ………. 
  } 
 } 
Ex: for(initialization; condition; increment/decrement) 
 { 
  for(initialization; condition; increment/decrement) 
  { 
   …………….. 
   …………….. 
   Body of the loop 
   …………….. 
  } 
 } 
Differences between while and do while loops: 

While Do while 

1.While loop is an entry controlled loop 
2. In while loop, the test condition is placed on the 
top of the loop. 
3. The test condition will be checked at first. 
4. Body of the loop will be executed only if test 
condition is true. 
5. it is also called as pre-testing loop. 
6. The while loop doesn’t have semicolon to teminate 
the loop. 
7. Syntax: while(condition) 
                    { 
                      Body of the loop 
                     } 
8.  T 
 

 
F 

 
 
 
9. Ex: i=1 
          while(condition) 
          { 
              count <<i; 
              i++; 
          } 

1.Do while loop is an exit controlled loop 
2. In do while loop, the test condition is placed on the 
bottom of the loop. 
3. The test condition will be checked at last. 
4. Body of the loop will be executed at least once 
even test condition is false. 
5. It is also called as post-testing loop. 
6. The do while loop condition have semicolon to 
terminate the loop. 
7. Syntax: do 
                  { 
                    Body of the loop 
                  }while(condition); 
8.  
 
 
 T 
  
 
 F 
9. Ex: do 
          { 
           printf(“%d”,i); 
            i++; 
            }while(condition); 

 

Break & Continuous key words: 
Introduction: There are two statements built in C++ programming language. There are two keywords to alter 
or modify the normal flow of  a program loops perform repeating a block of statements until the test condition 

Body of the loop 

cond 

Body of the loop 



17 
 

becomes false. But in some situations it is need to skip some statements inside the loop or terminate the loop 
immediately without checking any condition. In such cases, break and continue statements are used. 
Break: In C++ programming, break is used to terminate the loop immediately without checking any condition. 
The break statement is also used to switch statement to exit case statement. 
 
Syntax:     Break; 
 The break statement is used in all 3 looping statements. The diagram representation of break 
statements is as follows. 
 
 

 T F 

 

 

 

The diagram explains the working of break statement in all 3 loops. 

While loop: 
while(condition) 
{ 
 statement 
 if(condition) 
 { 
  break; 
 } 
} 
do while loop: 
do 
{ 
 statements 
 if(condition) 
 { 
  break; 

 
  
 
 
for loop: 

for(initialization;condition;increment/decrement) 
{ 
 statements; 
 if(condition) 
 { 
  break; 
 } 
 statements; 
} 

} 
 statements 
}while(condition); 

 
Continuous Statement: In some times it is needed to expect or skip some statements inside the loop. In 
such situations continuous statement is used. 
Syntax:    continue 
 Just like break statement, continue is also used in looping statements. The diagrammatic 
representation of continue statement is as follows. 
 
 

 T 

 F 

 

 

For the better understanding of how continue statement works analyze the following diagrams using continue 
statements.  
While loop: 
while(condition) 
{ 
 statements 

 if(condition) 
 { 
  continue; 

           Body of loop 

condition 

break 

                Body of the loop 

condition continue 



18 
 

 } 
 statements 
} 
 
do while loop: 
do 
{  

 statements 
 if(condition) 
 { 
  continue; 
 } 
 statements 
}while(condtion); 

for loop: 
for(initialization;condition;increment/decrement); 
{ 
 statements; 
 if(condition) 
 { 
  continue; 
 } 
 statements 
} 
Explain the difference between break & continue? 

Break Continue 

1.Break statement is used to stop execution of a loop 
without checking any condition. 
2. Break statement is used in loops switch & if 
statements. 
3. break statement is used to exit from a loop or 
switch case statement. 
4. syntax: break; 
5.  
 
 
T 
 
 F 

1. Continue statement is used to skip execution of a 
loop without checking any condition 
2. continue statement is used loop, if statement 
3. continue statement is used to return to the 
beginning of loop. 
4. syntax: continue; 
5. 
 
 
 F 
 T      
 
 
 
 

Examples: 
while(condition) 
{ 
 statements 
 if(codition) 
 { 
  break;  
 } 
 statements 
} 
do 
{ 
 statements 
 if(condition) 
 { 
  break; 
 } 
 statements 
}while(condition); 
for(initialization;condition;inc/dec) 
{ 
 statements 
 if(condition) 
 { 
  break; 
 } 
 statements 
} 
for(i=1;i<=10;i++) 
{ 

 if(i%5==0) 
 { 
  break; 
 else 
 printf(“%d”,i); 
 } 
} 
 
 
while(condition) 
{ 
 statements 
 if(condition) 
 { 
  continue; 
 } 
 statements 
} 
do 
{ 
 statements 
 if(condition) 
 { 
  continue; 
 } 
 statements 
}while(condition); 
for(initialization;condition;inc/decr) 
{ 

      Body of loop 

cond 

Continue 

         Body of loop 

cond break 



19 
 
 statements 
 if(condition) 
 { 
  continue; 
 } 
 statements 
} 
for(i=1;i<=10;i++) 
{ 
 if(i%==5) 
 { 
  continue; 
 else 
  printf(“%d”,i); 
 } 
} 
 


